
Acta Cryst. (1993). A49, 793-794 

Relation of the Poynting vector normal to the dispersion surface 
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Abstract. This communication is devoted to the so-called 
Ewald-Kato theorem, which declares that the Poynting 
vector is normal to the dispersion surface. Instead of the 
long-accepted hyperbolic result, an exact relation, valid 
for the whole of the Bragg-diffraction dispersion surface, 
is now pursued. 

The dispersion surface is a useful concept in realizing 
Bragg diffraction of waves in periodic structures. Ewald 
(1958) and, more particularly, Kato (1958) have pointed 
out that the physical energy flow of waves in perfect crys- 
tals is normal to the dispersion surface. This geometric 
picture is similar to that for the case of visible rays and 
their relevant normal surface. 

In the literature of the dynamical theory of diffraction, 
except for Kato's original proof, which gives a general 
consideration for the N-beam case (Chang, 1984), al- 
most all authors [for example, James (1963) (§ 75 in 
particular) and Pinsker (1978)] express the readily proved 
relation between the Poynting vector and the dispersion 
surface by 

tanO~-- [ ( I v l 2 - 1 ) / ( l v l 2 + l ) ] t a n O B ,  (1) 

(b) 

considering only the 'hyperbolic' part of the dashed 
dispersion curve shown in Fig. l(a). Note that ~2 is the 
angle between the Poynting vector and the Bragg planes 
and v is the amplitude ratio of refracted waves given by 
(8) (see Appendix). 

However, for the 'circular' part of the dashed curve, 
where I vl is small, the slope of the normal to the 
dispersion curve comes close to 

tan~2 °pt = d x / d z  = - ( 1 / x ) ( z  + k s in0 . ) ,  (2) 

which is a total derivative of the optical refraction circle 
shown in Fig. l(b); n~) = ( z / k  + s i n 0 . )  2 + ( x / k )  2 = 
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(1 + X o ) .  For Fig. l(a), (1) evidently fails in most 
parts of the dashed curve where ~ approaches ~opt but 

Because the theorem is generally established for Bragg 
diffraction, a rigorous proof for the two-beam case is very 
desirable. With the assumption of a constant polarization 
factor, which agrees with the case for a-polarized X-rays 
as well as that for neutron diffraction (because the wave 
functions are scalar), an inverse of the tangent slope at 
any tie point T of (z, x), 

d x / d z  

= - ( z / x ) {  [z 2 + x 2 - k2(1 + X o ) -  (ksinOB) 2] 

× [z 2 -t-X 2 -  k2(1 -I- X o ) + ( k s i n O B ) 2 ] - l } ,  

(3) 

• s 

(a) 
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Fig. 1. Excitation curve of X-rays in a crystal: (a) two-beam Bragg- 
diffraction dispersion surface cut in the zx plane, where TO = Ko = 
nok, TH = KH = nHk and I2 is the angle between the Poynting 
vector $ and the Bragg planes (11 6x); (b) one-beam Snell refraction 
circle, satisfied when no = (1 + Xo) 1/2 = constant. 
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is readily obtained from a total derivative of the fourth- 
order polynomial equation, (7), which is the exact ex- 
pression of the dispersion curve. 

The averaged Poynting vector, S, of each mode of 
waves excited in the crystal is proportional to KolEo[2+ 
KHIEH[ 2. So is its slope, 

tan 12 = Re(S. ez ) /Re(S.  ez ) 

= - ( 1 / x ) { z  + ksinOB[(1-  v21) 

x (1 + I  l)-J }. (4) 

We have tan 12 = dx/dz, because the right-hand 
sides of (3) and (4) can be shown to be identical 
and the relation of the Poynting vector normal to the 
dispersion surface for Bragg diffraction can then be 
derived. As the resonant region where z vanishes and 
x "- k cos0B is approached, (4) approaches (1); away 
from the hyperbolic region, as [v[ becomes negligible, 
(4) gives the one-beam optical result of (2). 

A P P E N D I X  

In the general two-beam case, the fundamental wave- 
field equation gives the relation between the amplitudes 
of refracted waves in a crystal: 

+ + = 0, 

c' ,,Eo + + = 0,  
(5) 

equation gives 

2 2 = ( l + x o ) ( n 2 o  +n2H) nOrtH 
- (1 + ~O)  2 + cP)(.HCPx[-I, (6) 

where no = K o / k  is the refractive index. An orthogonal 
coordinate system is suggested in Fig. l(a), with the 
origin M set at the center of O H ,  6z a unit vector of 
O H  and ez parallel to the Bragg planes. Accordingly, 
the dashed locus (z, x) of tie points is well described by 

[ ( z+ks inOB)2+x2][ ( z -ks inOB)2+x  2] 

= (1 + XO)[2(z 2 + x z + k 2 sin 20B)] 

- k2(1 + Xo) 2 + k2CPxHCPx[- I. (7) 

With a length parameter 

Z - - [ ( n ~  - n20)/2]/(CPxHCPxH)I/2 

and eigenvalues solved from (6), we obtain the ratio of 
EH to Eo as 

v(i) - EH(i)/Eo(i) 

x (CPxI~CPx~)~ /2 / cPx~  I (8) 

from (5). Here, there are two modes; i = 1 for the 
plus-sign solution and i -- 2 for the minus-sign solution. 

where Xa (G = O,H) is the Fourier component of 
the dielectric susceptibility and C v (P  = a, 7r) is the 
polarization factor. Recall that (5) is exact for the a- 
polarized component (C ~ = 1) but is only approximate 
as the longitudinal part has been ignored for the 7r- 
polarized E a  field. For nontrivial solutions of Eo and 
EH, refracted wave fields in the crystal, the secular 
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